Optimization of NiO_x by sputtering for scalable semi-transparent perovskite solar cells P. Dufour¹, M. Al Katrib¹, K. Baba Ali Turqui¹, A. Capitaine¹, N. Nazi¹, A. Derj¹, N. Nazi¹, E. Carriou¹, Y. Raoui, A. Levtchenko¹, D. Ory², M. Provost¹, I. Zimmerman¹, M. Boutemmy³, J. Rousset² - 1. Institut Photovoltaïque d'Ile-de-France (IPVF), 91120 Palaiseau, France. - 2. EDF R&D, Institut Photovoltaïque d'Ile-de-France (IPVF), 91120 Palaiseau, France - 3. ILV Institut Lavoisier de Versailles, Université de Versailles Saint-Quentin-en-Yvelines, France Perovskite solar cells have appeared as a promising technology for highly efficient devices and tandem applications. However, one of the main challenges is to develop a fully scalable stack to enables their commercialization while maintaining high efficiency and stability. Among the possible deposition techniques, magnetron sputtering appears as the most suitable techniques for industrial purposes. NiO_x is one of the most promising inorganic hole transport layers (HTL) and is widely used for perovskite solar cells. It exhibits high optical transparency, a large band gap, good stability, and relatively low cost. The main challenge lies in controlling the double edge sword of Ni^{3+} : while it ensures the holes transport properties of NiO_x in the bulk, an excess at the film surface may induce recombination sites and lead to a degradation of the perovskite.¹ This work aims at optimizing the optoelectronic properties of NiO_x by tuning the deposition conditions. Specific attention will be inclined toward the effect of oxygen ratio introduced during the deposition which is the key parameter to control the Ni^{3+} concentration.² More precisely, we will see how the oxygen ratio significantly affects the V_{oc} and fill factor (Figure 1a). The effects of thermal post-treatment on the optical properties and surface state will also be investigated (Figure 1b). Finally, strategies to efficiently passivate the sp- NiO_x surface and mitigate the charge defects effects will be proposed. Thus, using optimized sp- NiO_x , we could increase the fill factor up to 80% compared to 70% with NiO_x deposited by ALD and reach an efficiency of 16.6% in a fully scalable p-i-n stack (0.09 cm²) with perovskite deposited by slot-die in open-air conditions (Figure 1c). Figure 1: a) Effect of the O_2 ratio on the V_{oc} and FF, over two different batches deposited under the same conditions. b) Contact angle of NiOx thin films as deposited and after annealing. c) Comparison of JV curves of semi-transparent PIN perovskite solar cells with sp-NiOx and ALD-NiOx. - 1. Peng, Z. et al. ACS Appl. Energy Mater. 6, 1396-1403 (2023). - 2. Lee, L. K. et al. ACS Mater. Lett. 1698–1706 (2025).